Hello friends, In this post and following some next posts I would be writing about Divide and Conquer approach of solving problems and famous algorithms which use this approach .
In this post post I am explaining the famous Karatsuba Algorithm for multiplication of number in O(n^1.586) time complexity.
Lets talk about what we actually do when we multiply two numbers. As per I believe, most of us use the basic method of multiplication which has a time complexity of O(n^2).
Something similar to this:
The above shown multiplication is the simplest basic method for multiplication. But suppose you have to multiply :
3141592653589793238462643383279502884197169399375105820974944592
with
2718281828459045235360287471352662497757247093699959574966967627 .
Obviously, If you would go for the basic multiplication method for solving this, it would be a tedious job. That's where the Karatsuba multiplication method comes into play.
In this method we apply the basic principle of divide and conquer i.e divide this multiplication process into smaller sub-process for smaller parts of the number. Suppose we have to multiply 965107 by 102635, both of them are 6-digit numbers i.e a 6 by 6 multiplication.
we can write :
965107 * 102635 = (965000 + 107 ) * (102000 + 635)
= (965 * 10^3 + 107 ) * (102 * 10^3 + 635 )
= 965 * 102 * 10^6 + 107*635 + 10^3*(965*635 + 102*107)
We have reduced one 6 by 6 multilication method into four 3 by 3 multiplication .
The same approach is used in Karatsuba algorithm :
suppose we have to multiply two n-digit numbers X and Y.
For simplicity assume n is even (where n is the number of digits in X and Y ):
X = Xl*10^n/2 + Xr [Xl and Xr contain leftmost and rightmost n/2 bits of X]
Y = Yl*10^n/2 + Yr [Yl and Yr contain leftmost and rightmost n/2 bits of Y]
The product of X and Y can be written as :
XY = (Xl*10^n/2 + Xr)(Yl*10^n/2 + Yr)
= 10^n XlYl + 10^n/2(XlYr + XrYl) + XrYr
Also, XlYr + XrYl = (Xl + Xr)(Yl + Yr) - XlYl- XrYr
So the final result becomes : XY = 10^n XlYl + 10^n/2 * [(Xl + Xr)(Yl + Yr) - XlYl - XrYr] + XrYr
As we need to multiply such large numbers, we store the input in strings and then manipulate them according to our need.
What if the length of two given numbers is not same? In that case we append zeros in front of the numbers which are stored as integers. In case n is odd, we put floor(n/2) bits in left half and ceil(n/2) bits in right half.
The beauty of Karatsuba method is that you can use it for multiplication of numbers of any base ,2,10,16 etc.
The below given code is for multiplication of base 10 numbers. Read it carefully, don't just cram the code :
#include <iostream>
#include <algorithm>
#include <string.h>
#include<stdio.h>
const int MAX_LENGTH = 50000 * 2 + 1;
void add_leading_zeros(char* a, int n) {
int lena = strlen(a);
for (int i = lena - 1 + n; i >= n; --i) {
a[i] = a[i - n];
}
a[lena + n] = 0;
for (int i = 0; i < n; ++i) {
a[i] = '0';
}
}
void remove_leading_zeros(char* a) {
int lena = strlen(a);
int ind = 0;
while (ind < lena && a[ind] == '0') {
++ind;
}
for (int i = ind; i < lena; ++i) {
a[i - ind] = a[i];
}
a[lena - ind] = 0;
}
void sum(char* a, char* b, char* res) {
int lena = strlen(a);
int lenb = strlen(b);
if (lena < lenb) {
std::swap(a, b);
std::swap(lena, lenb);
}
int toAdd = 0;
for (int inda = lena - 1, indb = lenb - 1; inda >= 0; --inda, --indb) {
int x = a[inda] - '0';
int y = indb >= 0 ? b[indb] - '0' : 0;
int cur = x + y + toAdd;
if (cur >= 10) {
toAdd = 1;
cur -= 10;
} else {
toAdd = 0;
}
res[inda] = cur + '0';
}
if (toAdd == 1) {
add_leading_zeros(res, 1);
res[0] = '1';
}
}
// assume that a > b
void sub(char* a, char* b, char* res) {
int lena = strlen(a);
int lenb = strlen(b);
//assert(lena >= lenb);
int toSub = 0;
for (int inda = lena - 1, indb = lenb - 1; inda >= 0; --inda, --indb) {
int x = a[inda] - '0';
int y = indb >= 0 ? b[indb] - '0' : 0;
if (toSub == 1) {
x--;
}
int cur;
if (x < y) {
cur = x + 10 - y;
toSub = 1;
} else {
cur = x - y;
toSub = 0;
}
res[inda] = cur + '0';
}
}
// returns a * 10^n
void mult10(char* a, int n) {
int lena = strlen(a);
if (lena == 1 && a[0] == '0') {
return;
}
for (int i = lena; i < lena + n; ++i) {
a[i] = '0';
}
a[lena + n] = 0;
}
char* CreateArray(int len) {
char* res = new char[len];
memset(res, 0, len);
return res;
}
// add leading zeros if needed
void make_equal_length(char* a, char* b) {
int lena = strlen(a);
int lenb = strlen(b);
int n = std::max(lena, lenb);
add_leading_zeros(a, n - lena);
add_leading_zeros(b, n - lenb);
}
void karatsuba(char* x, char* y, char* res) {
make_equal_length(x, y);
int len = strlen(x);
if (len == 1) {
int val = (x[0] - '0') * (y[0] - '0');
if (val < 10) {
res[0] = val + '0';
} else {
res[0] = (val / 10) + '0';
res[1] = (val % 10) + '0';
}
} else {
char* xl = CreateArray(len);
char* xr = CreateArray(len);
char* yl = CreateArray(len);
char* yr = CreateArray(len);
int rightSize = len / 2;
int leftSize = len - rightSize;
strncpy(xl, x, leftSize);
strcpy(xr, x + leftSize);
strncpy(yl, y, leftSize);
strcpy(yr, y + leftSize);
int maxl = 3 * len;
char* P1 = CreateArray(maxl);
char* P2 = CreateArray(maxl);
char* P3 = CreateArray(maxl);
karatsuba(xl, yl, P1);
karatsuba(xr, yr, P2);
char* tmp1 = CreateArray(maxl);
char* tmp2 = CreateArray(maxl);
sum(xl, xr, tmp1);
sum(yl, yr, tmp2);
karatsuba(tmp1, tmp2, P3);
sub(P3, P1, P3);
sub(P3, P2, P3);
mult10(P3, rightSize);
mult10(P1, 2 * rightSize);
sum(P1, P2, res);
sum(res, P3, res);
remove_leading_zeros(res);
delete[] xl;
delete[] xr;
delete[] yl;
delete[] yr;
delete[] tmp1;
delete[] tmp2;
delete[] P1;
delete[] P2;
delete[] P3;
}
}
int main() {
char a[MAX_LENGTH], b[MAX_LENGTH];
scanf("%s\n%s", a, b);
char* res = CreateArray(MAX_LENGTH);
karatsuba(a, b, res);
printf("%s\n", res);
return 0;
}
The answer for multiplication of :
3141592653589793238462643383279502884197169399375105820974944592
with
2718281828459045235360287471352662497757247093699959574966967627
is :
8539734222673567065463550869546574495034888535765114961879601127067743044893204848617875072216249073013374895871952806582723184
Check the answer using your code.
Thank you