Sunday, 2 July 2017

Babylonian algorithm of finding square root

Finding square root of a number whether its perfect square or not is simple with sqrt(n) function , but what if you have to implement it on your own?

 There are several ways for it. I will tell you about 2 methods:

1. Using Binary Search in O(log N)  time complexity

2. Babylonian Method of O(log(log N)).

1. 
   Using Binary Search

   float squareroot( float n)


{    
    // Base cases
    if (n == 0 || n == 1) 
       return n;

    // Do Binary Search for floor(sqrt(x))
     float start = 1, end = n, ans;   
    while (start <= end) 
    {       
    cout<<start<<"    "<<end<<endl; 
        float mid = (start + end) / 2;

        // If x is a perfect square

      /* It is very important to see that mid*mid can overflow, so rather than doing (mid*mid) do
     if(mid<=x/mid)      */

          if(mid==n/mid)
            return mid;

        // Since we need floor, we update answer when mid*mid is 
        // smaller than x, and move closer to sqrt(x)
         if(mid<=n/mid)
        {
            start = mid + 1;
            ans = mid;
        } 
        else // If mid*mid is greater than x
            end = mid - 1;        
    }
    return (ans+1);
}
   





2.  

float squareRoot(float n)
{
  /*We are using n itself as initial approximation
   This can definitely be improved */
  float x = n;
  float y = 1;
  float e = 0.000001; /* e decides the accuracy level*/
  while(x - y > e)
  {
    x = (x + y)/2;
    y = n/x;
  }
  return x;

}
   

No comments:

Post a Comment